8. Appendix

8.1. Run sheets

During this thesis were performed six runs. Unfortunately, two of them couldn't be carried out until the end. In run #1, after performing the first etch the 6-inch wafer showed signs of corrosion, and the film seemed to start pilling off, that's why that run was terminated. This was an important drawback; since junctions take time to be deposited, plus the machines not always are available to deposit junctions since other works are been carried out at same time. In the run #5 the junction's magnetic properties were not right. There was problem with one of the targets during the deposition. The results obtained are mostly from the run #2 and #4. The 6-inch junction TJ1268 was processed in the run #2 and the samples N2TJ68 were processed in the run #4.

Run Sheet: #1

Structure	Sample: GTJ301 (on 6-inch Si wafer)
Junction Structure	Ta (30Å) / Ru (150Å) / CoFeFe (150Å) / MnIr (150Å) / CoFeFe^7 (40Å) / (Mg (5Å) w/o Oxidation) x 1 + (Mg+ox (5Å)) x 5 / CoFeFe^7 (50Å) / Ta (100Å)
Barrier Oxidation Conditions	5x8.0 sccm(O2); 2.2x10 ⁻⁴ Torr (Cryo Hv Open); 500"/step ; 200" Mg preclean/step with wafer in the loadlock
Deposition Conditions	Mg deposited using +7mA; +746V; CoFe1 :+25mA; +1280V; CoFe2,3 :+15mA; +998V Remaining layers: +22mA; +1200V

Deposition Cond	litions (TiWN ₂)	Deposition Time: 30s		
N7000	Power (W)	Gas Flow (sccm)	Pressure (mTorr)	
Setpoint	70 40	50	3	
Read	69 39	50.2	3.1	

Deposition Conditions (Al ₂ O ₃)		Deposition Time: 32 min	
UHV2	Power (W)	Gas Flow (sccm)	Pressure (Torr)
Setpoint	200	45	-
Read	200-199	44.9	4.0 x 10 ⁻³

STEP 0 Junction Deposition (A) + Passivation Layer (B) + Oxide layer (C)

(A) (B) Responsible: Susana Freitas (A) Machine: Nordiko 3000 (B) Machine: Nordiko 7000

(C) Responsible: Fernando Silva Machine: UHV2

STEP 1.1.1st Exposure - Bottom electrode definitionDate: 24 /04 / 07

Coating PR: 1.5 µm PR (Recipe 6/2)

Developer : Recipe 6/2

Machine: DWL	Mask Name: etchL1	X=-56000 , Y=0.0
- Cross Center: X=16 - Die: 20000 x 20000 - Die Frame: 25400 x - Vapor Prime: 5' reci - Photo Resist: 1.5 µ - WAFER6.map/dwl/v	58 , Y=54 μm : 25400 μm ipe-0 m wa/fa	

Optical Inspection:

STEP 1.2.1st Ion Milling - Total Structure EtchDate: 25/04 / 2007

Machine: N3600

Batch: Junction_etch

Wafer recipe: etch_function_stack / (etch_pan 60 deg (300s) and cool-down 200s)x4

Etching Conditions:

 Assist Gun:
 170 W
 +725 V/-345 V
 10 sccm Ar

 Assist Neut:
 364 V
 3 sccm Ar

 Sub Rotn:
 30 rpm

 Sub Pan:
 60 deg

Hot Micro-Strip + Ultrasonic Rinse with IPA + DI water Acetona bath

Optical Inspection:

Comments:

The sample seems to show signs of corrosion and the film is pilling off. The process has to be stopped.

Run Sheet: # 2

Responsible: André Augusto

Structure inch size)	Junction TJ1268 (6-
200'' Etch 30º//Ta (30Å) / Ru (150Å)/ CoFeFe ^a (150Å)/ MnIr (150Å)/ CoFeFe ^b (40Å) / Ru (8Å) / CoFeB20 (50Å) / (Al (5Å) + ox rem. plasma) /CoFeB20 (50Å) / Ru (100Å) / TiWN (150Å)	
Substrate = Si 6-inch/Al2O3 1000 Å /AI 600 Å heateda deposited with 25 mAb deposited with 15 mACoFeFe = Co56Fe4	
Oxidation Conditions Spot_a/Spot_b/Spot_c/Spot_1 (5")	110W; +0V/-0V; 5x8.0 sccm(O2); 2.2x10^-4 Torr (Cryo Hv Open)

STEP 0.A Junction Deposition

Date: 3 / 12 / 2006

Responsible: Susana Freitas

Machine: Nordiko 3000

STEP 0.B CAD design and mask conversion

Micron-size (lithography to be done by DWL)

- Minimum feature size: 1 μm

- Line/rectangle width from 1 to 100 μ m

To measure the magnetic properties by VSM: Matrix of small rectangles: $3\mu m$ x $6\mu m$

Conversion step

- L1 Bottom Electrode Inverted
 - Inverted
- L2 Junction Pillar L3 – Top Electrode

- Not Inverted

STEP 1.1. 1st Exposure – Bottom electrode definition

Coating PR: 1.5 µm PR (Recipe 6/2)

Developer: Recipe 6/2

Machine: DWL Mask Name: aaEtchL1	X=-45000 , Y=0.0
- Cross Center: X=168 , Y=54 - Die: 20000 x 20000 µm - Die Frame: 30000 x 30000 µm - Vapor Prime 5 min. (Recipe - 0) - Energy: 35 % - Focus: 35 - Photo Resist: 1.5 µm - WAFER6PA.map/dwl/wa/fa - Development time : 60 sec	3 2 6 5 9 8 7 12 11

Comments: All structures are OK

STEP 1.2. 1st Ion Milling – Total Structure Etch

Machine: N3000 Junction_etch

Wafer Recipe: etch-gun-stab / junction_etch / end etch

Read	
Assist Gun	60W / +500 V / -200 V / 8 sccm Ar
Assist Neutralizer	Not need
Sub Rotn	40% (30 rpm)
Sub Pan	70 degs

Time: 1600s

STEP 1.3 Resist Strip

Hot Micro-Strip + Ultrasonic Rinse with IPA + DI water

Total Time in Hot Micro-Strip : some hours

Ultrassonic Time : few

Optical Inspection:

Comments: All dies are OK. Inside the dies the majority of the features are also OK

Batch:

Aim Study the impact of oxidation on redeposition

STEP 2.1 2nd Exposure – Junction area definition: Samples 4,5,6,7

Coating PR: 1.5 µm PR (Recipe 6/2)

Developer: Recipe 6/2

Optical Inspection:

The 1 μ m size features seem smaller and in some samples they simple don't exist. Maybe do the exposure energy or development time.

Machine: N3600

Batch: Junction_etch

Wafer recipe: etch_junction_top_electrode + O2*

Process Step: Load wafer at 60° / etch pan 60 deg(**300 s**) / etch pan 30 deg (**100s**) / **oxidation beam** (**x s**)* / end_junction_etch

Samples	Oxidation Beam time (x /s)
6*	0
4	20
5	50
7	300

* The wafer recipe and process step don't contain the red part. The sample #6 is etched with the standard conditions.

P=1,8E-4 Torr T=21°C Sub Rotn: 30 rpm

Sample	Step	Read
		Assist Gun: 135W(250W) /1W/ 724V/ 35,9mA (48,7mA)/ 345V/ 0mA/10,2sccm
	60 deg	Assist Neut: 0mA/ 398,4V/ 3,0 sccm
6		Assist Gun: 142W/2W/ 724,3V/ 104,8mA / 345V/ 2mA/10,1sccm
	30 deg	Assist Neut: 183mA/ 345,6V/ 3,0 sccm
	60 deg	Assist Gun: 199W/2W/ 725V/ 104,5mA/ 344,8V/ 0mA/10,2sccm
	oo acg	Assist Neut: 178mA/ 344V/ 3,0 sccm
4	30 deg	Assist Gun: 134W/2W/ 724,3V/ 104,6mA/ 345V/ 2,3mA/10,2sccm
7	ou deg	Assist Neut: 47mA/ 318,3V/ 3,0 sccm
	O2 beam	Assist Gun: 145W/1W/101V/ 45mA / 350V/ 2sccm Ar/ 20 sccm O2
	O2 beam	Sub Pan: 0 deg Shutter Open: 20"
	60 deg	Assist Gun: 187W/2W/ 724,3V/ 104,3mA/ 344,8V/ 0mA/10,2sccm
		Assist Neut: 176mA/ 344V/ 3,0 sccm
5	30 deg	Assist Gun: 125W/1W/ 725V/ 104,2mA/ 344,8V/ 2,2mA/10,2sccm
5		Assist Neut: 116,5mA/ 319,5V/ 3,0 sccm
	O2 beam	Assist Gun: 147W/1W/101V/ 45mA / 345V/ 1,1mA/2,1sccm Ar/ 20 sccm O2
		Sub Pan: 0 deg Shutter Open: 50"
	60 dog	Assist Gun: 239W/2W/ 724V/ 107,3mA/ 344,8V/ 0,2mA/10,2sccm
7	ou deg	Assist Neut: 177mA/ 342V/ 3,0 sccm
	30 deg	Assist Gun: 162W/1W/ 724,3V/ 105mA/ 344,8V/ 2,7mA/10,2sccm
		Assist Neut: 117mA/ 318,3V/ 3,0 sccm
	O2 beam	Assist Gun: 145W/1W/101V/ 45mA / 345V/1.3mA/ 2,2sccm Ar/ 20,1 sccm O2
		Sub Pan: 0 deg Shutter Open: 300"

STEP 3.1. Insulating Layer Deposition- 500Å of Al₂O₃

Machine: UHV2	Power /W	Gas Flow /sccm	P /Torr
Setpoint	200	45	3 3 5 3
Read	200	45	3,3⊑-3
Time	27 min		

Thickness verification

Ellipsometer:	n=1,64	t = 491 A
Perfilometer:	t = 500 A	

STEP 3,2. Oxide Lift-Off

Hot u-strip + ultrasonic Rinse with IPA + DI water

Time: 24h

Optical inspection:

The features bigger than 2x1 or 3x1 seem OK. However, the ones that are smaller than the previous dimensions are close or are not seen on microscope (see visual inspection paper on run sheet). After etching and liftoff the samples present several kind of bubbles on the pads (except sample 6).

STEP 4.1 **3**^{rt} **Exposure – Top electrode metallization**

Coating PR: coat 1.5 µm PR (Recipe 6/2)

Developer: Recipe 6/2

Optical inspection:

Comments: The majority is OK. Few are bad.

1 00, 0011, 110 000, 00.200011, 0111
F1, 120", 3000 Å, AlSiCu 2.0kW, 410V, 4.9A, 50.4sccm, 3.0mT
F19, 27", 150Â, TiWN ₂ 0.5 kW, 431V, 1.2A, 50.65sccm, 3.1mT, 10scc

STEP 4.3 AlSiCu Liftoff

Hot μ -strip + ultrasonic Rinse with IPA + DI water

STEP 5. Annealing

Date 28 /02 / 07

Machine: big annealing setup

$$30'$$

45' Tset = 280°C

Aim Study the impact of the etching angle variation

STEP 2.1 2nd Exposure – Junction area definition: Samples 3,8,9,11

Coating PR: 1.5 µm PR (Recipe 6/2)

Developer: Recipe 6/2

- #11 same as #9
- #3 all junctions are there, the 1x1 seem a little bit big

STEP 2.2 2nd Ion Milling – Junction area definition Date: 27 / 01 /07

Machine: N3600

Batch: Junction_etch

Wafer recipe: etch_junction_top_electrode

P=1,8E-4 Torr T=21°C Sub Rotn: 30 rpm

Sample	#11	#9	#8	#3
Sub pan 30° (400 s)		Sub pan 60º (300 s)	Sub pan 60º (300 s)	Sub pan 60º (300 s)
		Sub pan 40º (100 s)	Sub pan 50º (100 s)	Sub pan 40º (100 s)
				Oxidation beam 20sccm (50 s)

STEP 3.1. Insulating Layer Deposition- 500Å of Al₂O₃

Responsible: Filipe Cardoso

Machine: UHV2	Power /W	Gas Flow /sccm	P /Torr
Setpoint	200	45	2 2E 2
Read	200	45	3,3⊑-3
Time	27 min		

STEP 3.2. Oxide Lift-Off

Date: 06/02/07

Hot u-strip + ultrasonic Rinse with IPA + DI water

Time: 24h

Optical inspection:

Comments: The sample #3 is the one less define in shape and size

Details: #3	Areas bigger than expect: the junctions are 1μm side bigger Round corners (worst one) Not very well define Some of the big areas didn't open
#8	Below $1\mu m$ side the junctions are about 20% smaller, some are not there Above $2\mu m$ side the junctions are well define
#9	Junctions sizes are very close to the expected (betters) $(1x1 \rightarrow 1.1x1.2 \text{ or } 1x5 \rightarrow 1.1x5.2)$ The smaller and thinners junctions, seem little bit unfocus
#11	Areas bigger than expect: the junctions are $1\mu m$ side bigger $(1x1\rightarrow 1.5x1.5 \text{ or } 1x2\rightarrow 1.5x2.5 \text{ and then } 1x5\rightarrow 2x6)$ Junctions are well define, corners ± round (better than #3)

STEP 4.1 **3^{rt} Exposure – Top electrode metallization**

Coating PR: coat 1.5 µm PR (Recipe 6/2)

Developer: Recipe 6/2

Machine: DWL	Mask Name: aaEtchL3
- Cross Center: X=168 , Y=54 - Vapor Prime 5 min. (Recipe - 0) - Energy: 35 % - Focus: 35 - Photo Resist: 1.5 μm - Recipe: 6/2 - WAFER6PA.map/dwl/wa/fa	e.a.

Optical inspection:

Comments: They seem OK. The left squares matrix only appears after the liftoff.

STEP 4.2	Contact Leads Deposition (AlSiCu)		Date: 07 / 02 /07
Machine: No	ordiko 7000		
Sequence 48	3		
	Module 2:	F9, 60" F69, 30W, ROB99, 50.2sccm, 3mT	
	Module 4:	F1, 120", 3000 Â 2.0kW, 410V, 4.9A, 50.4sccm, 3.0mT	
	Module 3:	F19, 27"/ <mark>54"*</mark> , 150Â/ <mark>300Â*</mark> 0.5 kW, 431V, 1.2A, 50.65sccm, 3.1mT,	10sccm
* First time v had to be ret	was tried to deposit	t 300 Å of TiWN₂, however there was a pre time was deposited 150Å of TiWN₂, instead 3	essure problem, and system 300Â.

STEP 4.3 AlSiCu Liftoff

Hot µ-strip + ultrasonic Rinse with IPA + DI water

Sample #9	
Sample #11	

Date 28 /02 / 07

Machine: big annealing setup

Annealing conditions: 30 min@280°C

Final outlook

Run Sheet: #4

Responsible: André Augusto

Structure		Su	bstrate: Glass
Junction	Bottom Electrode	Barrier	Top Electrode
N2 TJ68 4 samples (A,B,C,D)	Ta50/Ru180/Ta30/MnPt200/CoFe20/Ru9/ CoFeB30	MgO 8 A,	CoFeB 30/Ru50/Ta50/ TiWN₂ 150A

STEP 0 Junction Deposition (A) and passivation Layer(B)

Responsible: Piotr/Zhao

- (A) Machine: Nordiko 2000
- (B) Machine: Nordiko 7000

 $\begin{array}{l} \textbf{Seq.17} - \text{Mod 2 funct. 9 (contetch)} \quad \textbf{(60")} \ \text{P=70W/40W}, \ \text{p=3mTorr, 50 sccm Ar} \\ \text{Mod.3 funct.19 (svpassiv)} \quad \textbf{(150A TiWN_2, 27")} \quad \textbf{0.5 kW}, \ \textbf{3mTorr, 50 sccm Ar} + \textbf{10sccm N_2} \end{array}$

STEP 1.1.	1 st Exposure – Bottom electrode definition	Date: 24 /04 / 07

Coating PR: 1.5 µm PR (Recipe 6/2)

Developer: Recipe 6/2

Machine: DWL	Mask Name: amsmtj1	
- Cross Center: X=168 , Y=54 - Vapor Prime 5 min. (Recipe - 0) - Energy: 47.5 % - Focus: 25 - Photo Resist: 1.5 μm - Development time: 60" - map:AMSION	e.a.	

Optical Inspection:

Comments:

The structures from A, B, C and D samples are well defined. They are quite clean, but there are some particles that can have influence on photoresist uniformity.

STEP 1.2. 1st Ion Milling – Total Structure Etch

Date: 26 / 04 / 2007

Machine: N3600

Standard Etching Recipe (Junction Etch) : Etch pan 60°

Total thickness to etch: 867 A

Samples	Conditions
A,B, C	3x(300" @ 60deg + 120 " cool down)
D	4x(270" @ 60deg + 120" cool down)

Hot Micro-Strip + Ultrasonic Rinse with IPA + DI water

Total Time in Hot Micro-Strip: some hours Ultrasounds Time : few

2nd Exposure – Junction area definition

Optical Inspection:

Comments:

All samples look OK.

STEP 2.1

Date: 07 /05 /2007

Coating PR: 1.5 µm PR (Recipe 6/2)

Developer : Recipe 6/2

Sample	Development time
A, B, C	35"
D	30"+5"

Optical Inspection:

Majority all samples	1x5 B	1x5 B

Comments: All samples can have devices just a little bit bigger that the ones that were designed: more critical for $1\mu m$ side devices.

<u>Sample B</u> The developing was not so good like others, but there is no critical issue. 1x3 um^2 size devices can be 1x2 μm^2 .

Total thickness with overetch (rate 1A/s): 330 A

Calibration Sample	Structure
Piotr	TiWN ₂ 150/CoFeB 30/Ru50/Ta50/MgO/CoFeB30

Sample	Oxidation Beam X (s)
А	No O2
В	100
С	20
D	300

Assist Gun / Neutralizer	Power (W)	V+ (V)	l+ (mA)	V- (V)	l- (mA)	Gas Flow (sccm)	l neutr (mA)	V neutr (V)	Sub Rotn (rpm)	Sub Pan (deg)
Read Values Etch steps	158	724	105	345	2.3	10.2 He 0.1 O2	116,5	330V	30	60/30
Read Values O2 step	135	101	45.2	345	1.2	2.2 He 20.1 O2	-	-	30	0

Comments:

The read values above written are similar for all samples.

STEP 3.1.	Insulating Laver Deposition- 500Å of Al ₂ O ₂	Date: 11 /05 / 2007
		Dutc. 11 / 00 / 2007

Machine: UHV2

Deposition	AIO ₂	Gas Flow	Base	Power
Time	thickness		Pressure	Source
27 min	500 A	45 sccm	3 mT	200 W

STEP 3.2. Oxide Lift-Off

Hot u-strip + ultrasonic Rinse with IPA + DI water

Optical inspection:

Comments: The samples A, B and C seem all ok. But the sample D faced several problems in the liftoff.

Date: 11 / 05 / 2007

STEP 4.1 **3^{rt} Exposure – Top electrode metallization**

Coating PR: 1.5 µm PR (Recipe 6/2)

Developer: Recipe 6/2

Optical inspection:

Comments: All samples are OK.

STEP 4.2. Contact Leads Deposition (AlSiCu)

Machine: Nordiko 7000

Sequence 48	Module 2:	F9, 60" F69, 30W, ROB99, 50.2sccm, 3mT
	Module 4:	F1, 120", 3000 Å, AlSiCu 2.0kW, 410V, 4.9A, 50.4sccm, 3.0mT
	Module 3:	F19, 27", 150Â, TiWN ₂ 0.5 kW, 431V, 1.2A, 50.65sccm, 3.1mT, 10scc

STEP 4.3 AlSiCu Lift-Off

Hot μ -strip + ultrasonic Rinse with IPA + DI water

Optical inspection:

Comments: All samples OK.

Final outlook:

STEP 4 Annealing

Date 07 / 06 / 07

First the samples were annealed in the bigger setup at 280°C for 1h and the TMR signal was lower than expected. Then the samples were sliced and annealed in smaller setup at 320°C for 1h (field 4kOe), and the TMR improves a lot.

